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Analyses of more distantly related HIV and SIV sequences that take as their point of departure
an alignment, either of the nucleic acid or amino acid sequences, will only be as sound as the align-
ment, which is itself an hypothesis. For this reason, many sequence analyses are conducted over only
“unambiguously alignable” stretches of sequence, typically stretches for which the similarities are 50%
or greater, and the information in the more varied regions (similarities less than 30%) is lost to the
analysis. Thisis unfortunate insofar as structural information is typically derived from distantly related,
not closely related, sequences. Given the diversity of primate immunodeficiency viral (PIV) sequences,
alignments in the database publications up to this year were constrained of necessity to highly related
subgroups of viral types, which were then “apposed” by eye. These safe, but restricted, alignments
could not support some analyses based upon the entire set of PIV sequences. This year, in Parts I, Il
and Ill, we have brought into play a new alignment strategy that holds some promise for simultaneously
and objectively aligning all members of the primate immunodeficiency virus family.

An additional reason for exploring new approaches to HIV and SIV sequence alignment concerns
computational time: multiple alignment, viewed as an extension of pairwise alignment, requires time
proportional to the average length of the sequences raised to gomteerek is the number of sequences
being aligned. In the approach described below, sequences are aligned in time linearly proportional to
k, the number of sequences. There are further advantages to the method. Most alignment strategies
are “progressive”, which is to say that the alignment unfolds from the pairs of most similar sequences
to the pairs of most dissimilar sequences; the essence of this approach is captured by Doolittle’s
dictum—"once a gap always a gap” [1]. McClure and coworkers critique twelve different alignment
methods, most of which are progressive, according to their abilities to correctly identify ordered series
of motifs in highly divergent proteins that have been experimentally studied [2]. They find that no
single approach is superior to all others, and most are time-consuming. Some of the newer multiple
alignment programs are intentionally not progressive, partly for the reason that progressive alignments
may be trapped by local optima, partly because phylogenetic inferences are implicitly assumed. The
Hidden Markov Method (HMM) approach, which we utilize and describe herein, is not progressive;
instead, it emphasizes position-specific probability distributions of character states, hence a gap in one
portion of the alignment may be scored differently than a gap in another portion of the aligment. Most
alignment programs have position-independent scoring schemes, which are unrealistic in the case of
most proteins since they are composed of both conserved regions and indel-rich variable regions. As
HMM is centered upon the columns of information, this approach, referred to as a “generalized profile”,
is indifferent to the relatedness of pairs of sequences [3,4]. On the other hand, because a probability
distribution over the 20 amino acids must be constructed at each position in the sequence, HMM is
employed with large sets (40 or more taxa) of highly divergent sequences such as is seen with HIVs
and SIVs. Furthermore, an assumption of independence between sites is made. The latter assumption
is not universally defensible, however neither is it new to sequence analyses.

At this point in the discussion, it will be helpful to briefly recall what a Markov chain is and
in what sense the sequence alignment problem is said to be “hidden.” A first order Markov process
is one in which the state at timeis a probabilistic function of the state at time- 1. We think
that this is a reasonable assumption for viral sequence evolution. Many phenomena describable by a
Markov process are observabkg, changes in weather where a complete history of weather is on
record [5]; when the changes of state are themselves not observable, the process is said to be hidden.
In the case of HIV sequences, we do not possess a history of the intermediate states through which
seguences have evolved. Fitch’s notion afowarion the set of concomitantly variable codons, can
illustrate the hiddeness: we imagine that evolutionary changes shift the makeup of the covarion, at
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one time a position be invariant, at another time being variable; one state representing one covarion,
another state representing another covarion. These states are not observed. The overall problem is
to formally arrive at a probabilitistic model that will satisfactorily account for the sequences that are
known. Specific aspects of the problem, in addition to facilitating alignments, are to derive a suitable
“consensus” sequence, to classify a sequence (is it distantly related or totally unrelated?), to support
structural analysis, and to gain insight into the “hidden” evolutionary process.

Hence the HMM approach leads to a model for the sequence set that has been analyzed. An
example of an HMM-generated model, or so-called architecture, is shown on the cover of this year's
compendium. With subsequent database searches, this model—in the form of a “most likely” sequence,
or discriminato—embodies all of the information contained in the data set, not merely one particular
sequence. As we shall see, this consensus-like sequence is useful for database searching (below and
accompanying Part IV section concerned with Molecular Mimicry). We have also coupled the HMM-
generated model to prediction analyses of protein structure using an array of contemporary algorithms.
Eventually, the sequence alignment and the structure prediction will become intertwined in an effort to
optimize the alignment.

Be forewarned that the method is still in its infancy and that our utilization is at the most elementary
level: refinement of the approach, especially to extend the analysis to nonprimate lentiviruses and other
retroviruses, entails extensive parameterization studies such as those being undertaken by McClure and
coworkers [6]. Issues such as optimum model length, size of training set, etc. are not taken up in this
analysis, which was restricted to just primate lentiviral sequences.

In the following text, we first describe in some detail the HMM approach to alignment as we
have applied it in this compendium, especially in Parts | and II, then we turn to discussions of database
searching and protein structure prediction.

A. MULTIPLE SEQUENCE ALIGNMENT OF HIVS and SIVS USING HMM

The Hidden Markov Model (HMM), as it has been applied to sequence analysis, has many
similarities to what is called a “profile” [7,8] in terms of the information that it captures concerning a set
of related sequences. In a sense, each can be thought of as an extended consensus sequence in which the
information retained at each position includes the frequency with which each possible base or amino
acid residue is seen in the sequence set at that position. The HMM is constructed from a number of
successive nodes generally corresponding to the columns of positional homology of an alignment; each
of these nodes contains a match state, an insert state and a delete state (see figure on the cover of this
compendium). Match states correspond to simple amino acid (or base) substitutions; insert and delete
states are self-explanatory. Associated with each of the states in the model are vectors of probabilities
that specify the likelihood with which the system might pass to each member of the set of next possible
states; these are referred to as transition probabilities. Also associated with match states and insert states
are vectors of probability specifying the likelihood that the system will generate or “emit” each possible
amino acid or nucleotide when in that state; delete states allow for the possibility that a sequence not
have a character in a certain column. Altogether, there will be three probability matrices to describe
the model—the transition matrix, the emission matrix, and the initial state matrix.

The resultant architecture of the HMM allows one to establish a correspondence between the
characters of a given sequence and the states of the model. The succession of the characters in the
sequence will thus determine a path through the states of the model, and associated with this path will
be a likelihood determined both by the probabilities of transition between successive states and the
probability that each state has for generating the character that has been assigned to it. Provided that all
the probabilities in the model, including both transition and emission probabilities, are non-zero, then
each path through the model that is permissible according to the rules governing transitions from one
node of the model to the next will have a non-zero probability of generating the given sequence. The
task of finding the optimal path through the model for a given sequence, i.e. the path with the highest
likelihood, can be thought of as aligning the sequence to the model, and may be solved using dynamic
programming techniques.
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The most important differences between the profile and the HMM lie not in the resultant infor-
mation structures, but in the means by which these structures are generated from the sequence data. As
with an ordinary consensus sequence, the profile is generated from a set of sequences whose alignment
has been determined by some independent means. The parameters for describing an HMM can also be
derived from a given alignment in this manner. More importantly, however, there exists an algorithm for
HMMs that allows one to determine the parameters of the model having the highest likelihood (at least
within the neighborhood of the initial model) given a set of unaligned sequences. This approach is quite
similar to certain techniques used in connection with artificial intelligence applications, and is known
as “training” the model. The general procedure for training makes use of an Expectation-Maximization
algorithm, of which there are several [3,4,6].

Speaking generally, the algorithm used in training the parameters of an HMM involves an iterative
approach that uses an initial model to estimate an alignment of the given set of sequences, then uses this
alignment to re-estimate the model, and so on until the estimates converge to an optimum. For example,
if we are given a set of protein sequences that are thought to be related, a good estimate for an initial
model can be made by using the frequency distribution of amino acids in the unaligned set as a vector
of probabilities assigned to all the match states and insert states of the model; transition probabilities
between the states of the initial model can be assigned arbitrarily, or using a prior assessment of the
relative frequencies of indel events. All of the sequences in the given set will now be aligned in turn
to the model, finding the path through the model that maximizes the likelihood for the given sequence;
by aligning all the sequences in the set to the model in this pairwise fashion, one transitively defines
a multiple sequence alignment of the sequences to one another. The multiple sequence alignment
thus created can be used for an estimate of the parameters of the HMM, by counting the frequency
of occurrence of each amino acid at each position of the alignment and the frequency of indel events
across the alignment. This adjusted HMM then serves as a model for another round of alignment, and
so on. It can be shown that this process is guaranteed to converge to a local maximum of the likelihood
function.

To address the problem of guaranteeing convergence to a global maximum for this function, a
variation of the simulated annealing algorithm can be applied at each step of the iterative algorithm; this
basically allows a stochastically generated sub-optimal alignment to be chosen for the re-estimation of
the model's parameters, where the sub-optimality of the alignment decreases to zero with successive
iterations of the re-estimation procedure.

As should be clear from the preceding discussion, the model can be used to generate a multiple
sequence alignment of sequences, including sequences not belonging to the set used to train the param-
eters of the model. A distinct advantage to using the HMM over the standard dynamic programming
algorithm for multiple sequence alignments is that since one is really performing a set of pairwise com-
parisons of the sequences to the model, the time and memory requirements increase only linearly with
the number of sequences, as opposed to exponentially with dynamic programming. It follows that it is
relatively easy to add a new sequence to the alignment and rebuild the model; experimentally-derived
information can also be added to the model (knowprérs) with relative ease.

A good general introduction to the basic ideas of HMMs (not oriented, however, toward se-
quence analysis) is reference 5 below. We have employed the HMMER implementation that is pub-
licly available [9-10]éddy@genetics.wustl.eduAnother HMM suite that can be obtained is SAM
(http://www.cse.ucsc.edu/research/compbio/sam)hffile SAM Web site contains a number of links
to papers concerned with HMMs and sequence analysis. These programs were originally applied to
highly studied data sets, “validation” sets [3,4,6] (globins, EF-hand proteins, kinases, and proteases),
for which extensive experimentally-based data were available to help assess the alignment results. With
HIV and SIV sequences, the results of the approach must be critiqued by scutinizing motifs—do cys-
teines, cleavage sites, and potential glycosylation sites in envelope align, for example? This can be
problematic as it is not preordained, for instance, that all sequons need align [11]. Another approach
to critiquing the HMM-generated alignment involves construction of blocks using representative PIV
sequences (described below). Finally, it is necessary to compare scores from matching individual HIV
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and SIV sequences to the “most likely”, discriminator, sequence, the HMM equivalent of a consen-
sus: as we shall report in the section to follow, our model has been “overfitted” to HIV-1 sequences;
nevertheless, the boundaries and motifs appear to be satisfactorily aligned.

Approximately 400 HIV and SIV sequences were trained using HMMER version 1.8. The
frequency distribution of amino acids in the unaligned HIV and SIV sequences was used as input in
place of the default distribution derived from the PIR database. We should first consider the success or
failure of the approach with respect to identifying motifs. The envelope protein alignment of an HIV2
sequence (SBL/ISY) to the HMM consensus is instructive in this regard (figure 1): 1) cysteines, denoted
by ", and potential N-linked glycosylation sites, denoted by "™, are aligned as we might expect them
to be aligned when doing ordinary alignment assisted by manual input; 2) four noncontiguous residues
found in certain HIV-1 subtype B sequences to be essential for CD4 interaction, D, E, W and D (see
pp. 1I-1,2 of NOV 95), are aligned in almost all HIVs and SIVs (tryptophans are in general highly
conserved); 3) the gp120/gp41 cleavage site is aligned, as we expect, although an alternative cleavage
site may be used in some HIV-2s.

Further confirmation of the alignment comes from BLOCKS analysis: using representative se-
quences from the Part | HMMER-generated alignments, blocks—gapless arrays of multiply aligned
conserved sequences—were constructed using the BLOCKMAKER program [12,13] (http://www.
blocks.fhcrc.org). Two different programs are employed by BLOCKMAKER, the MOTIF program
and the GIBBS Sampler program. Boundaries for the created blocks were highly conserved in the
HMM alignments (Part Il), however blocks based on envelope sequences largely coincide with con-
served domains, hence other motifs (cysteines, glycosylation sites) must provide the main support for
alignment over the more varied regions.

A difficulty encountered by the HMM (and every) alignment method is large indels; we have
the least confidence in those. To the extent that these stretches may have arisen through acquisition of
genetic material, they may not be intrinsically alignable as they may not be homologous. The reader
may want to compare the V1-V2 region alignment in figure 1 with one manually created by Lamers
et al. [14]. Alignments in previous publications may be “safer”, but they are also more constrained
and less informative because they were executed over just highly related sequences. Since the different
alignments have different applications, both are made available on the Wetitgitél{iv-web.lanl.goy

Nucleotide sequence alignments, by this approach, were produced from the HMM-generated
amino acid sequence alignments. The nucleotide alignment was then subjected to HMMER and a
nucleotide-specific model was obtained. This approach follows in a general way the approach taken in
earlier database publications that were based on the PIMA algorithm of Smith and Smith.

B. DATABASE SEARCHING USING AN HMM APPROACH

An important application of the HMM-generated model is in the discrimination of related se-
quences from non-related sequences. This is especially useful in connection with database searching.
Associated with each sequence in the database is a probability, a log-odds score analogous to a BLAST
score, with which the sequence could be generated by the given model. With the HMMER algorithm
[10],

score log, LiM)
~ 2P R)

where the alignment of each sequence in the datalsgses compared to both the HMM generated
model, M, and a random modeR. The latter should have the same amino acid composition as the
database at large and it should be as likalpriori, asM. The log-odds score corrects for sequence
length. A score greater than zero has a better than even chance of being significant, however, as a rule
of thumb, a score must be about 20 or more to be deemed significant [9]. The distribution of likelihood
scores for all the sequences in the database will provide a measure of discrimination between similar
and non-similar sequences. Using the HMM for database searching has the advantage of utilising a
great deal more of the information available for a family of sequences than can be captured by query
techniques that force one to use only one sequence from the family or, at best, a standard consensus
sequence as a query against the database.
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Figure 1. Comparison of an HIV-2 Env Sequence to the HMM Model
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The HMMER program, used herein, employs the Smith-Waterman (S-W) algorithm for opti-
mizing local alignments. As with BLAST, both identities and equivalencies (conserved amino acid
replacements) are scored; unlike BLAST, which is a heuristic search program, the S-W algorithm re-
ports only the best match between the HMM consensus and a given database entry. A general discussion
of these somewhat different approaches to database searching is found in reference [15]. Compositional
bias may be present in the outcome of a database search, which is to say that spurious matches may
arise by virtue of similar compositions only.

The comparison shown in figure 1 of a particular HIV-2 sequence to the HMM model consensus
was taken from an S-W/HMMER search of the protein database using the HMM model for envelope.
The score (corrected for the model length and the length of the target sequence) was highly significant,
1676, however HIV-1 scores uniformly hovered between 2700 and 2800, which tells us that the model
was overfitted to HIV-1s. Scores among HIV-1s of different genetic subtypes did not significantly differ,
which was satisfying, but HIV-2 and SIV scores were uniformly lower. frtaximum discrimination
option of HMMER, in contrast to the defauttaximum likelihoodmproves this situation somewhat
[9-10]. Note in figure 1 that the reduction in score for the HIV-2 is mostly due to amino acid differences
regarded to be conservative (indicated with a‘+’). Although the probability distributions at the various
homologous sites did not have adequate representation from the HIV-2 sequences, the alignment, as
such, is reasonable. The scores over just the envelope gp41 were closer; and the scores for gag protein
were much closer, 1759 for an HIV-1, 1478 for an HIV-2, showing that the fit is more inclusive.

Parallel S-W/HMMER envelope searches were conducted using a database in which HIV and SIV
sequences were filtered out. The only non-zero matches to nonprimate lentiviral sequences involved
Visna and its close relatives, OMVVSA and CAEV. The log-odds scores for these were less than 10;
for example, from the Env gp41,

HMM Consensus NNMTWMEWEREIDNYTaNIYtLIEES
+N TW++WERE Y +N + L+ ES
CAEV Env DNCTWQQWERELQGYDGNLTMLLRES

The score for this match was 5.55, suggesting that the cutoff value of 20 should not be too rigidly
applied. The highest match score in this search, 12.15, belongs to a horse skeletal muscle sodium
channel alpha-subunit, which illustrates the possibility of compositional bias:

HMM Consensus NTTWLFNSTWn.NgTW.SNNTEG.ND
NTTW N TW+ N+TW SN+T++ ND
query NTTWYGNDTWYSNDTWNSNDTWSSND

In summary, the HMM-based search is fairly stringent as no significant matches were found to
the HIV/SIV envelope model that were not proteins from primate immunodeficiency viruses. Selected
examples of envelope matches with weak scores (less than 10) can be found in the accompanying section
of Part IV concerned with molecular mimicry. HMM-generated models and database searches were
also conducted for Gag, Tat, Vpr-Vpx, Vpu, and Nef, all of which are more evenly fitted than Env to
all primate immunodeficiency viruses. Some brief comments regarding the search results follow:

Gag: Significant matches to nonprimate lentiviruses were more common with the HMM con-
sensus for Gag than for Env: Visna, CAEV, EIAV, Jembrana, BIV and FIV all displayed matches, with
FIV having the highest score (approximately 85). Most of these matches included the Gag zinc-finger
motif, and as a result many matches above a score of 20 were also observed for proteins other than Gag.
The tetrahymena cnjB gene product, for instance, scored 35.33, which was comparable to scores for
some of the nonprimate lentiviral Gags. Many scores less than 20 were encountered for the zinc-finger
motif, for example:

HMM Consensus RKIIKCFNCGKEGHIARNCRAPRKKGCWKCGKEGH
R + KCFNC EGH C+ P +GC CG GH
C. elegans RNA helicase RGPMKCFNCKGEGHRSAECPEP-PRGCFNCGEQGH

11-69
DEC 96



HIV Alignments and Structures

The log-odds score for this match was 4.67. We conclude from this search that the HMM model
was especially good for picking up zinc-finger motifs of a certain kind.The so-called major homology
region (MHR), which in the HMM consensus appears as IRQGPKEPFRDYVDRFYKTL, showed up
only in matches with lentiviral Gags or with retroviral type D Gag sequences, such as those of SRV.

Tat: Of the nonprimate lentiviruses, only BIV and the Jembrana disease virus possessed signifi-
cant match scores to the HMM consensus, 43.75 and 37.94 (versus an HIV-1 or HIV-2 score of about
280). These matches were across the second and third domains of the first coding exon, which encom-
pass cysteine residues involved in intramolecular bonding and the R/IKKGLGI motif that is thought to
constitute the minimal Tat. EIAV displayed a weaker match, 10.43, and only in the second domain.
These findings corroborate earlier judgments in the field that only BIV, and possibly EIAV, among
nonprimate lentiviruses, possess a “true Tat” (the Jembrana virus has been sequenced subsequent to that
conclusion.) Hence, FIV's match in the fourth domain, with a score of merely 5.26, is not considered
Tat-specific:

HMM Consensus KKRRQRRRTPQKS
KK RQRRR ++K+
FIV KKKRQRRRRKKKA

Vpr-Vpx: Given the paralogous relationship between Vpr and Vpx, one HMM Consensus was
generated for the two proteins. The highest score against this consensus for sequences other than primate
lentiviral sequences was with SA-OMVYV, the Visna relative:

HMM Consensus MEQAPWEfPRERIDQGWEWDPQRE
ME+A PR +G +RE
SA-OMVVSA MEEA----PRR--RPG----GSRE

The score was 10.44. A nearly identical score was attained by a ligand for Fas antigen, but clearly
due to mere compositional homogeneity:

HMM Consensus GPGGWRRGPPPRNPPSRSMH
GPG+ RR PPP++PP+ S +
ligand for Fas GPGQ-RR-PPPPPPPP-SPL

Vpu: In contrast to other HMM consensus sequences, the discriminator for Vpu was generated
solely from HIV-1s. Match scores varied significantly—251 for the BAL strain but merely 45.38 for
ANT70—suggesting that the model was overfitted to M group viruses. The subtype D virus ELI had a
score of 229. Among non-HIV-1s, the highest score, 10.93, was found for a toxin receptor:

HMM Consensus MQPLQILAIVALVVAallAIVVW
+ L+l AV LV ++ A VWW
Cb5a anaphylatoxin receptor ILALVIFAVVFLVGVLGNALVVW

Rev sequences from SIV displayed weak similarity with the N-terminus of the HMM model for
Vpu:

HMM Consensus MQPLQILAI
+Q LQ LAl
SIVRev  IQQLQRLAI

Nef: With exception of primate immunodeficiency viral sequences, no database sequence dis-
played striking similarity to regions of the NEF HMM consensus. When mediocre scores were seen,
they invariably resulted from compositional homogenity—cysteines, acidic amino acid residues, etc.
This result is in contrast to the widespread claims regarding Nef “homologs” (i.e., similarities) in the
literature of HIV.
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From these preliminary studies, we conclude that the HMM approach to database searching is
sensitive and specific. As a supplement to searches based on an HMM consensus, users should consider
searching with COBBLER sequences deduced from the BLOCKMAKER program (http://www.blocks.
fhere.org). Future improvements to the approach will include the introduction of structural information.

We shall now turn to structure-prediction and the interplay between primary sequence alignment and
structure-based alignment.

C. PROTEIN STRUCTURE PREDICTION

A promising starting point for predicting a structure for a given amino acid sequence is to determine
whether that sequence is sufficiently similar to any other sequence for which biophysical data, ideally
X-ray crystallographic data, is available. For sure, sequences that are 50% are more similar will have
similar structures, while less similar sequences can have similar folds over core regions. The focus herein
will be upon weakly similar sequences, in particular upon those of envelopes for which comparatively
little biophysical data, beyond limited NMR, is available.

The earliest structure prediction algorithms, such as the Chou-Fasman algorithm, possess a pre-
dictive accuracy of no better than about 55%, partly due to the small set of known structures upon which
they depend and partly due to their assumptions. Three-state predictions—Helshéet E) and
coil (C)—are more accurate than four-state predictions that include tijnthé accuracy is poorest
at the ends of polypeptides and best in the core regions. Secondary stucture prediction in general is
most reliable for transmembrane helices. With the buildup of the protein database and the development
of more powerful algorithms, which especially take into account multiple sequence alignments, the
predictive accuracy for secondary structure can now reach slightly better than 70%.

SOPM (self-optimised prediction method) is an example of a recent approach to protein secondary
structure prediction [16—17]. When applied to 239 dissimilar proteins of known structure, this algorithm
yields three-state prediction accuracies of 69% to 73%. On the other hand, because it involves sizeable
subdatabases of sequences and their known structures, it will take longer to run than the older, less
accurate algorithms. The basic ideas used in the SOPM are as follows.

First, a sliding window of a fixed size is applied to the protein sequence of unknown secondary
structure to define a set of overlapping peptides. For example, suppose we are given the sequence
KPQRNSKSTAAL .. .with a window whose size is eight amino acids long and which is moved one
amino acid over at each step. The resultant set of octapeptides will be KPQRNSKS, PQRNSKST,
QRNSKSTA, RNSKSTAA, NSKSTAAL . .. Note that most of the amino acids of the original sequence
will belong to successive octapeptides, each differing from the previous peptide by the removal of an
amino acid from one end and the addition of an amino acid to the other.

Next, each of the peptides thus derived from the query sequence is now compared to a database
of peptides that has been created by similar means from a database of proteins of known secondary
structure. If the peptide from the query sequence matches a peptide from the database above a certain
threshold of similarity, then the similarity score is added to the conformational scores for each of the
amino acids in the peptide. In our example, suppose that the first peptide KPQRNSKS matches a
peptide in the database RPQRDTKS whose known structufHiSCCEEE and that the similarity
score between these two peptides is 30. If this score is above the threshold parameter, then 30 will be
added to the first two amino acids’ helical conformational scores, to the next three amino acids’ coll
conformational scores and to the last three amino acids’ sheet conformational scores. There may be
other peptides in the database matching the query peptide with alternative predictions for the secondary
structure of each of the amino acids, and all these predictive scores will be added together in each of
the conformational categories, resulting in a distribution of scores over the possible secondary structure
conformations. After the first query peptide has been compared, the process will continue for each of
the remaining peptides in the query set. The final scores for an amino acid belonging to eight successive
query peptides will thus include the scores for the comparisons of all eight of these peptides against the
entire database of peptides of known structure.

After all comparisons have been made, each amino acid in the original protein will have values
associated with its propensity to adopt a conformation in each of the secondary structure classes. From
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the method of calculation detailed above it is clear that the empirical evidence for the prediction of the
secondary structure of the amino acid weighs most heavily for that class with the highest score.

There are two additional statistics concerning the distribution of the scores over all the classes that
can be revealing of the predictive power of this approach. The firstis the actual magnitude of the scores
for any given amino acid. If these are small relative to the cumulative scores for other amino acids, it
may indicate a lack of information for the prediction of the secondary structure conformation of that
amino acid. This could happen for two reasons: first, if the amino acid is within the window size to
either terminus of the original protein, it will belong to proportionately fewer query peptides and have
fewer comparisons with the database that could add to its score; second, the amino acid could belong to
a series of peptides that for some reason are poorly represented in the database of known structures, and
could thus have few comparisons to the database having a large enough similarity score to be added to
the conformational scores for the amino acid. In either case, values that are low in magnitude indicate
a lack of information in the database for the amino acid in its given environment.

The second statistic that is pertinent to the predictive value of a set of scores for a given amino
acid is the difference between the scores of the highest and next-highest scoring classes of secondary
structure. If this difference is small, it may be inferred that the information in the database for the amino
acid in this particular environment is conflicting. For example, suppose that approximately half of the
peptides contributing to a given amino acid’s conformational scores support a helical structure, while
the other half support its being classed as an element of a beta sheet. In this scenario, it is likely that the
cumulative scores for helix and sheet for this amino acid would be nearly equal, and thus the difference
between them would be near zero. In order to make this statistic independent of the magnitudes of the
scores (which were accounted for in the former statistic), one may normalize the values by dividing the
difference between the highest and next-highest scores by the magnitude of the highest score.

It is the widespread wisdom at this time to evaluate sequences, whenever possible, by more than
one algorithmic approach; some methods are better for predicting helices, others for predicting sheets,
etc. The SOPMA serveh(tp://www.ibcp.fr/predict.htm) therefore, submits a sequence to alternative
methods of structure prediction—Gibrat, Levin, DPM and the PhD [18—-21]—and also generates a
consensus over those and the SOPM prediction itself. The HMM-generated “most likely” sequence
was submitted to the SOPMA suite, producing predictions using the five individual algorithms as well
as a consensus prediction, with the following regits helix, E = beta sheet, T = turn, &€ = coil;
blocks, defined by the MOTIF program in BLOCKMAKER, are indicated).

Although the HMM model has been overfitted in this case to HIV-1, the structures should be
somewhat conserved across primate lentiviral boundaries. Gallaher and coworkers have explored this
for the surface and transmembrane components of the lentiviral envelope [22,23]. Because the HMM-
generated “most likely” sequence embodies information from hundreds of primate immunodeficiency
viruses, it offers a reasonable test of their “eclectic” models derived from representative lentiviral
sequences [22,23].

The Gallaher model for the surface protein (dependent primarily upon the Chou-Fasman al-
gorithm) identifies five helical regions, all five of which are strongly or moderately predicted by the
SOPMA suite: the 1st overlaps the 1st definable block in gp120 (figure 2 and Part Il); the 4th is included
in the 4th block and the 5th is included in the 5th block. Helices 1, 3 and 5 are strongly evident in HIV-2
sequences such as ROD. Furthermore, SOPMA suggests a small stretch of helix at the C-terminal end
of the V3 loop and also at the C-terminal end of the gp120. In general, helices are the most predictable
of secondary structures. Turns are weakly predicted following the V2 loop (in the 2nd definable block)
and twice within the V3 loop, as we have come to expect. A stronger prediction is for the second turn
that follows the third helical region, which separate V3 and V4; this “hinge” coincides with two of the
four highly conserved CD4 contact residues and is bordered by the 3rd definable block. The two other
contact residues for CD4 interaction occur in the 4th block, which includes the 4th helical region. An
examination of predictions for several HIV-1 V3 loop sequences of different subtypes suggests that the
Levin, DPM and SOPM methods most consistently predict the putative type Il beta turn at the crest of
the V3 loop. Further structural analysis of V3 loops is provided by Catasti and Gupta in Part Ill.
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1 10 20 30 40 50 60
| | | I I I I
MRVKGIRRNYQHLWRWGILLLGMLMICSAAENLWVTVYYGVPVWKEATTTLFCASDAKAY
EEEEeEEEEEHHEHEHHHHHHHHHHHHHHHCCCEEEEEECCCEEECHCCHHHHHHCCHCCC
ESESSCECCSTTTCTCHHHHHHEHEEECCCTTCEEEEEECCCCCCHCCHEEECCCCCHCH
CCEECECCCCCCEEEEEEEEEEEEEEECHHHHEEEEEEECECEEHHHCEEEEEHCCHCCC
HHTTTCCHHHCTEECCCCEEHCCCHHHHTCCCCHEEEEECCCTTCCCCCCCCCCCHHHHH
ccccCHHHHHHHHHHHHHHHHHHHHHEECCCCEEEEEEEEEECCCCCCEEEEEECCCCCC
-CE-C----H---E--HHHHHH-HHHE--CCCEEEEEEECCC--CHCC-EEE--CCHCCC
alpha-helix 1 -- turn?
DTEVHNVWATHACVPTDPNPQEIVLENVTENFNMWKNNMVEQMHEDIISLWDQSLKPCVK
HHHHHEHEHEECECCCCCCCCHEEEEHHHHHHHHHHHCHHHHHHHHHHHHHHHCCCCCCC
HHHHHHHHHHCCECCCCCSCSCEEEHHHHHHHHHHHHHHHHHHHHHHHHHCHTHCCTTCC
CCCEEEEEHECCEECCCCCCCHEEEEEECCCCTCCCCCEEHHHHHCEEEEECCCCCCEEC
TTTHHHHHHCCEEECCCCCCCEEEEEEEEEHHHCTTCHHHHHHHHCEEECCCCCHHHHHH
cccceceececececcecceccecccccceEeEeecCHHHHHHHHCHHHHHHHHHHHHHHHHCCCCCEE
---HH-H-H-CCECCcccccc-eEeeg--HHHHHHHHCHHHHHHHHHHHHH-H-CCCC--C
--> V1 loop <-- >
LTPLCVTLNCTDVNATNTNNTTNTTKIDMINETSSCIRQDNCTGLEKGEIKNCSFNITTE
CCCCEECECCCCECCEECCCCCCCEEEEEECCCCCECCCCCCCCCCCCCEEECCCCCCHH
CCCEEEEEECECCCHTCTTCCCCCEEEEEECCCCSECCCSTCCCCCTTCCHHCCHHEEHH
ECCEEEEECCCCECCCCCCCCCCCCCECEECCCCCEECCCTCCCCTCCCECCTCECEEEE
HCCTEEEECCEECCCCCTTCCCCCCEEEECCCCCCCCCCCCCEEEETTEEEEEECCHEEH
CCCCEEEEEECCCCCCCCCCCCCCCCCCCreeeeeeeeececCCCCCCCCECCEEEECCECC
CCC-EEEECCCCCCCCCCCCCCCCCEEEEECCCCCECC CCCCCCCCCCCE---C-C-E-H
V2 loop <-- hinge?
IRDKKQKEYALFYKLDVVPIDNNNTSYRLINCNTSVITQACPKVSFEPIPIHYCAPAGFA
HHHHHHHHHHHHHHHHEEEECCCCCCEEEEECCCCCCCECCCCCCCCCCCHCECCCCCHH
CHCSSHHHHHHHCECCECCCCTCCSEEEEECTCCCEEEEHCCTCCTCSCEEEECCCTSCE
ECCCCTCHHHEEEEECEECECTTTCCEEEECCCCEEEECCCCCECECCCCCCCCCCCCEH
HHHCCHHHHHHHHHHHHEEECCCCCCCEEECCCCCCCEEEEEEEEECCCCEEEECCHHHH
CCCHHHHHHHHEECCCEEEECCCCCEEEEEECCCCEEEECCCCCCCCCCCEEEECCCCEE
-HCCCHHHHHHH---CEEEECCCCCCEEEECCCCCEEEECCCCCC-CCCCEEECCCCC-H
alpha helix 2
ILKCNDKKFNGTGPCKNVSTVQCTHGIKPVVSTQLLLNGSLAEEEIVIRSENFTDNAKTI
HHHHCCCCCCCCCCCCCCCEEEECCCCCCEEEHHHHHCCCHHHHHEEEHHHCCCHCHHHE
EEESCCTSCCTCCCCCCCEEECCCCECCCECETCEEEHHCCCTTCEEEECHCCCHCCSCE
EECTTTCCCTTCTCCCTEEEEEEECCECCEEEEEEECTCCCHHHHEEEECCCCCCCCCEE
HHHHTCCCCCCCCCCCCCCHHECCTTCCCEEEEEEHHHHHHTTHHHEEHHHHHHHHHHHE
EEEECCCCCCCCCCCCCEEEEEECCCCCEEEEEEEECCCCCHHHEEEEEEEECCCCCEEE
EE--CCCCCCCCCCCCCCEEEEECCCCCCEEEEEEE--CCCHHHHEEEE-HCCCHCC--E
V3 loop
-->  turn? turn? <-- -- alpha
IVQLNESVEINCTRPNNNTRKSITIGPGQAFYATGDIIGDIRQAHCNISGAKWNETLQQV
EEEECCCCEEEECCCCCCCCEEEEECCCCEEEECCCHCEEEEEHEECCCCCCHHHHHHHH
EEEECSHHCEECCCCTCCSCSCEECCTTCCEEETSECEHECCHCCCCHTTCCCHHHHHHH
EEEECCEEEECCCCCTCTCCCEEEECCCCCECCCCCEECCECHHCCCECTCCCCCCEHEE
EEEECCCHECCCCCCCCCCCCCEEECCCCTTECCCCCCCCEEHHEEECCCCCHHHHHHHH
EEEECCEEEEEECCCCCCCEEEEEECCCEEEEECCCCCCCHHHCCHHHHCHHHHHHHHHH
EEEECC--EEECCCCCCCCCCEEEECCCC-EEECCCCCCCE-HHC-C-CCCCHHHHHHHH
CD4 CD4

|
helix 3 -- hinge?
AKKLREQFGNKTIIFNQSSGGDPEITTHSFNCGGEFFYCNTTQLFNSTWNNGTWNSTESN
HHHHHHHHCCCEEEEECCCCCCCEEEEECECCCCEEEEECCEEEEEEEEECCCEEEECCC
HHHHHHHTTTSEEEEECCCSCCCECCECSTCCTCCCEEECCTHHECCTCTTTCCCCTCCT
HHHHHHCTCCCEEEECTTTTCTCCCCECCCTTCCCEEEECCCCEECCCCTTCCCCCCTTC
HHHHHHTTTCCEEEEETTTCCCTEEEEEEEEEECCEEEEEEEEEECTTCCTTTCCCCCCC
HHHHHHHCCCCEEEEECCCCCCCEEEEEEEECCCEEEEEEEHHHHCCCCCCCCCCCCCCC
HHHHHHHTCCCEEEEECCCCCCCEEEEECE-CCCCEEEECC--EECC-C-TCCCCCCCCC
CD4
| CD4
-- alpha helix 4 -- |
DTITLPCRIKQIINMWQEVGKAMYAPPIEGQITCSSNITGLLLTRDGGDNNSTNETFRPG
CCEEEHHCCHCEHHCHHHHCCCCCCCCCCCEEEECCCCCEEEEEECCCCCCCCCEEECCC
SCEEEEECHHHHHHHHHHHTSCECCSCCCTCCCCCTTCCEEEEEETCCCCCTTCCCCCCT
CCECCCCCEEEEEEEECHECCHCCCCCCCCCEECCCCECCEEECCCTTTTTTCCCCCCTT
CCEEEECCHHHEEEHHHHHTEEEECCTHCCCCCCCCCCCHEEHCCCCCCCCCCCCCCCCC
cccccCHHHHHHHHHHHHHHHHCCCCCCCCEEEEECCCCEEEEEECCCCCCCCCEEECCC
CCEEE--CHHHEHHHHHHH-C-CCCCCCCCCEECCCCCCEEEEEECCCCCCCCCCCCCCC
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1 10 20 30 40 50 60
I I I I I I I
--alpha helix 5-- gp120/gp41 fusion domain
most-likely GGDMRDNWRSELYKYKVVKIEPLGVAPTKAKRRVVQREKRAVGLGAVFLGFLGAAGSTMG

Gibrat method cccccCceECHHHHHHHHEHEHCHHHHCCHHHHHHHHHHHHHHHHHHHHHEEEECHCCCEEE
Levin method CCCCHHHHHHHHHHHCCCECCCCECCCCCHHHHEHHHCCHHHHCHCEEHCCCCCCCCCCC

DPM method TCTCCCCCCCHECEEEEEEECCCCCCCCCHHHEEEEHHHHHECECEEEEEEECTCCCCCC
SOPMA predict CCCCCCTHHHHHETTEEEEEECCCCCCCHHHHHHHHHHHHHHHTTCEEEEEEECCCHHHH
PhD method CCCCHHHHHHHHCCCCEEEEECCCCCCCCHHHHHHCCCCCCCCCCHHHHHHHHHHHHHHHA
Consensus CCCCCC-HHHHH----EEEECCCCCCCCCHHHHHHHHHHHHHH---EEEEEEC-CCC---

turn? -- extended helix --
most-likely AASITLTVQARQLLSGIVQQONNLLRAIEAQQHLLQLTVWGIKQLQARVLAVERYLKDQQ

Gibrat method ~ EHEEEHHHHHHHEEEHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Levin method ~ CCCCEEECCCCCCCTHCCCCTTHHHHHHHHHHHHHCEEEEHCCHHTHHHHHHHHHCTTCC

DPM method CCCEEEEEEHHHEEEEEEECCCCHEHHHHHHHHEEEEEEEEECHHHHHEEHEHHEHCCCC
SOPMA predict ~HHHHEEEEHHHCCCCHHCCCHHHHHHHHHHHHHHHHHCCCCHHHHHHHHHHHHHHHHHHC
PhD method HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Consensus -H--EEE-HHHH---HH--CHHHHHHHHHHHHHHHHH---HHHHHHHHHHHHHHHHHHHC

turn? turn? - extended helix
most-likely LLGIWGCSGKLICTTTVPWNSSWSNKSLTPIWNNMTWMEWEREIDNYTALIYTLLEESQN

Gibrat method EEEECEECCCEEEEEEECCCCECCCCCEEEEEHCCCHHHHHHHHHHHHHHHEEEHHHHHH
Levin method HHHCECCTCCEEETEECCCCCCSTTTTECEHCHHHCHHHHHHCHHHHHHHHHHCCCHCCC

DPM method EECEETTCCCEEEEEEECCCCCCTTCCCCCCCCCCCEHHHHHHECCCCEEEEEEHHHTCC

SOPMA predict EEEEEEETTCEEEEEEECCCEECCccccccCcCCHHHHHHHHHHHHHCCHHHHHHHCCHHH

PhD method HHHHCCCCEEEEEEEECCCccccccCcCHHHHHHCCCHHHHHHHHHHHHHHHHHHHHHHHH

Consensus EE-EE--CCCEEEEEEECCCCCCccccc-c--cHccCHHHHHHHHHHHHHHHHH-HHHHHH
extended helix and transmembrane region -- turn?

most-likely QQEKNEQELLELDKWASLWNWFDITNWLWYIKIFIMIVGGLIGLRIVFAVLSIVNRVRQG

Gibrat method HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEEEECCCCCEEEEEEEEEEEEEEECC
Levin method CCCHHHHHHHHHHSCCCCHHHHHHHHHHHHHHHEEEHHTSCCCHHHHEHHHHHHHHCCSS

DPM method CCTCCCHHHHHHCHCHCEECEECEECEEEEEEEEEEEEECEEEEEEEEEEEEEEEEECCC
SOPMA predict ~HHHHHHHHHHHCCCCCCCCETCCCCCEEEEEEEEEEEEECTTCCEEEEEEEEEEEEEEEC
PhD method HHHHHHHHHHHHCHHHHHHHHHHHHHHHHHHHHHE EEEECEHHHHHHHHHHHHHHHHHHC
Consensus HHHHHHHHHHHHCHCHC-HHHHHHHHHHHHHHHEEEEEEC--C-EEEEEEEEEEEEE-CC
most-likely YSPLSFPPGYIQQTHLPAPRGPDRPEGIEEEGGERDRDRSWRLVNGFLALIWDDLRSLCL

Gibrat method = CCCCCCCCCCEEEECCCcCcccccccecccceHeccccccHCHHHHHHHHHHHHHHHHHHHHHAA
Levin method CCCCCCCCSsSsCEEcCcccceccccceccCHHHHTCCCCHHHHHHHHHHHHHHHHHSTSCCHEH

DPM method CCCCCCCCCCECCCCCCCCCTCCCCCCCCTCCCTCCCCCCEEEECCEEEEEECCCCCEEE
SOPMA predict = CCEEECCCCCEEEEEEEHHTCCCCHHHHHHTTTCCCHTCCCEECCCCEECCCCCCEEEEE
PhD method CCCcCccrceececececececcceccecececececcecececcccceccccccccccccccCHHHHHHHHHHHHHHAHAAA
Consensus CCCCCCCCCCEEECCCC Ccceeeccececcece-HeeeeeeHeee---HHHHHHHHHC-C--HEH
most-likely FSYHRLRDLLLIVARIVELLGRSSLKGLRRGWEALKYLWNLLQYWSQELKNSAVSLLNAT

Gibrat method ~ HHHHHHHHHHHHHHHHHHHHCHCCHHCHEHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Levin method ~ HETHCHHHHHHHHHHHHHHHCTTCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

DPM method EEECCEHCEEEEEEEEEEEETTCCTCCTTCCHHHHHEEECEECEECCHTCCCCEEEECHC
SOPMA predict ~ EETTTTHHHHHHHHHHHHHHTCCCHHHHHHHHHHHHHHHHHHHHHHHHHHTTHEEEECTH
PhD method HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Consensus HE-H-HHHHHHHHHHHHHHH--CCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
most-likely AIAVAEGTDRVIEVLQRIGRAILHIPRRIRQGLERALL

Gibrat method ~ HHHHHCCCHHHHHHHHHHHHHEEECCCHHHHHHHHHHH
Levin method ~ HHHHHTCCCHHHHHHHHHCHHECHCCHSHCTTCHSHHE

DPM method HEHEHCTCCEEEEEEEEECEEEEEECCEEECCHHHHCC

SOPMA predict ~HHHHHCCTTEEEEEECCCCCEEEECCCEHHHHHHTTTT

PhD method HHHHHHHHHHHHHHHHHHHHHHHHCHHHHHHHHHHHCC

Consensus HHHHHCCC-HHHHHHHHHCHHEEECCC-HHHHHHHH--
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The transmembrane portion of envelope contains more helix than does the surface portion, as
determined by circular dichroism, and the structure predictions confirm this for the HMM consensus.
An extended helix, encompassed by the 7th definable block, immediately preceeds the immunodominant
domain and another, encompassed by the 8th block, follows it. Another predictable helix coincides
with the membrane spanning domain, as we would expect. A predicted turn associated with the RQGY
peptide that ostensibly signals the terminus of the transmembrane region [24] is not supported by the
SOPMA suite.

In the future, we hope to refine the HMM analyses of HIVs and SIVs, first, by addressing the

overrepresentation problem of HIV-1s and, second, by integrating the structural information with the
primary sequence data.
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